top of page

PUBLICATION

Noriaki Katayama, Takashi Osanai (2024) 
Arginine inhibits the arginine biosynthesis rate-limiting enzyme and leads to the accumulation of intracellular aspartate in Synechocystis sp. PCC 6803. Plant Mol. Biol. 144, 27. 

https://link.springer.com/article/10.1007/s11103-024-01416-1

Miyo Yamane, Kaori Iwazumi, Takashi Osanai (2024)

Immobilization of fumarase from thermophilic eukaryotic red alga Cyanidioschyzon merolae on ceramic carrier. J. Gen. Appl. Microbiol. in press.

https://doi.org/10.2323/jgam.2024.02.003

Minori Akiyama, Takashi Osanai (2024)

Regulation of organic acid and hydrogen production by NADH/NAD+ ratio in Synechocystis sp. PCC 6803. Front Microbiol. 14, 1332449.

https://doi.org/10.3389/fmicb.2023.1332449

Shoki Ito, Atsuko Watanabe, Takashi Osanai (2024)

Regulation of L-aspartate oxidase contributes to  NADP+ biosynthesis in Synechocystis sp. PCC 6803. Plant Physiol. 194, 945-957

https://doi.org/10.1093/plphys/kiad580

Miyo Yamane, Takashi Osanai (2023)

Nondiazotrophic cyanobacteria metabolic engineering for succinate and lactate production. Algal Res. 71, 103088. 

https://doi.org/10.1016/j.algal.2023.103088

Yu Takahashi, Kosuke Shimamoto, Chihana Toyokawa, Kengo Suzuki, Takashi Osanai (2023) 

Gravity sedimentation of eukaryotic algae Euglena gracilis accelerated by ethanol cultivation. Appl Microbiol Biotechnol 107,3021-3032. 

https://link.springer.com/article/10.1007/s00253-023-12476-6

Maki Nishii, Shoki Ito, Takashi Osanai (2023)

Citrate synthase from Cyanidioschyzon merolae exhibits high oxaloacetate and acetyl-CoA catalytic efficiency. Plant Mol Biol 111, 429-438.

10.1007/s11103-023-01335-7

Noriaki Katayama, Kaori Iwazumi, Hiromi Suzuki, Takashi Osanai, Shoki Ito (2022)

Malic enzyme, not malate dehydrogenase, mainly oxidizes malate that originates from the tricarboxylic acid cycle in cyanobacteria. mBio, 31, e0218722.

https://doi.org/10.1128/mbio.02187-22

Noriaki Katayama, Takashi Osanai (2022)

Arginine inhibition of the argininosuccinate lyases is conserved among three orders in cyanobacteria. Plant Mol Biol. 110,13-22.

https://doi.org/10.1007/s11103-022-01280-x

Miyabi Murakami, Takashi Osanai (2022)

Biochemical properties of beta-amylase from red algae and improvement of its thermostability through immobilization. ACS Omega 7, 36195-36205. 

https://pubs.acs.org/doi/10.1021/acsomega.2c03315

Ryo Kariyazono, Takashi Osanai (2022)

Identification of genome-wide distribution of cyanobacterial group 2 sigma factor SigE accountable for its regulon. Plant J. 110, 548-561.

https://pubmed.ncbi.nlm.nih.gov/35092706/

 

Maki Nishii, Shoki Ito, Noriaki Katayama, Takashi Osanai (2021)

Biochemical elucidation of citrate accumulation in Synechocystis sp. PCC 6803 via kinetic analysis of aconitase. Sci. Rep. 11, 17131  10.1038/s41598-021-96432-2

https://www.nature.com/articles/s41598-021-96432-2

Hiroko Iijima, Atsuko Watanabe, Haruna Sukigara, Kaori Iwazumi, Tomokazu Shirai, Akihiko Kondo, Takash Osanai (2021)

Four-carbon dicarboxylic acid production through the reductive branch of the open cyanobacterial tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Metab. Eng. 65, 88-98 doi: 10.1016/j.ymben.2021.03.007 

https://www.meiji.ac.jp/koho/press/6t5h7p00003akjuu.html

​Shoki Ito, Takumi Hakamada, Tatsumi Ogino, Takashi Osanai (2021)

Reconstitution of oxaloacetate metabolism in the tricarboxylic acid cycle in Synechocystis sp. PCC 6803: discovery of important factors that directly affect the conversion of oxaloacetate. Plant J. 105, 1449–1458

https://doi.org/10.1111/tpj.15120

 

Chihiro Yoshida*, Miyabi Murakami*, Anna Niwa, Masahiro Takeya, Takashi Osanai (2021) 

Efficient extraction and preservation of thermotolerant phycocyanins from red alga Cyanidioschyzon merolae. J. Biosci. Bioeng. 131(2), 161-167

https://doi.org/10.1016/j.jbiosc.2020.09.021 *Equally contributed

Kazumasa Yoshioka, Kengo Suzuki, Takashi Osanai (2020)

Effect of pH on metabolite excretion and cell morphology of Euglena gracilis under dark, anaerobic conditions. Algal Res. 51, 102084. 

https://doi.org/10.1016/j.algal.2020.102084

Shoki Ito, Kaori Iwazumi , Haruna Sukigara ,Takashi Osanai (2020)

Fumarase From Cyanidioschyzon merolae Stably Shows High Catalytic Activity for Fumarate Hydration Under High Temperature Conditions. Front. Microbiol. 11, 2190. 

https://www.frontiersin.org/articles/10.3389/fmicb.2020.560894/full

Shoki Ito, Takashi Osanai (2020)

​Unconventional biochemical regulation of the oxidative pentose phosphate pathway in the model cyanobacterium Synechocystis sp. PCC 6803. Biochem. J. 477, 1309-1321.

https://doi.org/10.1042/bcj20200038

Hiroko Iijima, Atsuko Watanabe, Haruna Sukigara, Tomokazu Shirai, Akihiko Kondo, Takashi Osanai (2020)

Simultaneous increases in the levels of compatible solutes by cost-effective cultivation of Synechocystis sp. PCC 6803. Biotech. Bioeng.117, 1649-1660. 

https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.27324

Ayumi Kizawa, Takashi Osanai (2020)

Overexpression of the Response Regulator rpaA Causes an Impaired Cell Division in the Cyanobacterium Synechocystis sp. PCC 6803. J. Gen. Appl. Microbiol. 66(2), 121-128.

 https://doi.org/10.2323/jgam.2020.01.004

Ryota Hidese, Mami Matsuda, Takashi Osanai, Tomohisa Hasunuma, Akihiko Kondo (2020)

Malic Enzyme Facilitates d-Lactate Production through Increased Pyruvate Supply during Anoxic Dark Fermentation in Synechocystis sp. PCC 6803. ACS Synth. Biol. 9(2), 260-268.

https://doi.org/10.1021/acssynbio.9b00281

Noriaki Katayama, Masahiro Takeya, Takashi Osanai (2019)

Biochemical characterisation of fumarase C from a unicellular cyanobacterium demonstrating its substrate affinity, altered by an amino acid substitution. Sci. Rep. 9(1), 10629.

https://www.nature.com/articles/s41598-019-47025-7

Satomi Arisaka, Nodoka Terahara, Akira Oikawa, Takashi Osanai (2019)

Increased polyhydroxybutyrate levels by ntcA overexpression in Synechocystis sp. PCC 6803. Algal Res. 41, 101565.

https://doi.org/10.1016/j.algal.2019.101565

Shoki Ito, Naoto Koyama, Takashi Osanai (2019)

Citrate synthase from Synechocystis is a distinct class of bacterial citrate synthase. Sci. Rep. 9, 6038. 

https://doi.org/10.1038/s41598-019-42659-z

Yuko Tomita, Masahiro Takeya, Kengo Suzuki, Nobuko Nitta, Chieko Higuchi, Yuka Marukawa-Hashimoto, Takashi Osanai (2019)

Amino acid excretion from Euglena gracilis cells in dark and anaerobic conditions. Algal Res. 126, 139-144. 

doi.org/10.1016/j.algal.2018.11.017

Shoki Ito, Takashi Osanai (2018)

Single Amino Acid Change in 6-Phosphogluconate dehydrogenase from Synechocystis conveys higher affinity for NADP+ and Altered Mode of Inhibition by NADPH. Plant Cell Physiol. 59, 2452-2461. doi: 10.1093/pcp/pcy165.
https://academic.oup.com/pcp/advance-article/doi/10.1093/pcp/pcy165/5069196

Noriaki Katayama, Hiroko Iijima, Takashi Osanai  (2018)

Production of Bioplastic Compounds by Genetically Manipulated and Metabolic Engineered Cyanobacteria. 
In: Zhang W., Song X. (eds) Synthetic Biology of Cyanobacteria.Advances in Experimental Medicine and Biology, vol 1080. Springer, Singapore
https://link.springer.com/chapter/10.1007%2F978-981-13-0854-3_7

Masahiro Takeya, Shoki Ito, Haruna Sukigara, Takashi Osanai (2018)

Purification and Characterisation of Malate Dehydrogenase From Synechocystis sp. PCC 6803: Biochemical Barrier of the Oxidative Tricarboxylic Acid Cycle. Front. Plant Sci. 9, 947. 
https://doi.org/10.3389/fpls.2018.00947

Satomi Arisaka, Haruna Sukigara , Takashi Osanai (2018)

Genetic manipulation to overexpress rpaA altered photosynthetic electron transport in Synechocystis sp. PCC 6803. J. Biosci. Bioeng. 126, 139-144.
https://www.ncbi.nlm.nih.gov/pubmed/29519652

Shoki Ito, Masahiro Takeya, Takashi Osanai (2017)

Substrate specificity and allosteric regulation of a D-lactate dehydrogenase from a unicellular cyanobacterium are altered by an amino acid substitution. Sci. Rep. 7, 15052.
https://www.ncbi.nlm.nih.gov/pubmed/29118438

Masahiro Takeya, Hiroko Iijima, Haruna Sukigara, Takashi Osanai (2017)

Cluster-level relationships of genes involved in carbon metabolism in Synechocystis sp. PCC 6803: Development of a novel succinate-producing strain. Plant Cell Physiol. 59, 72-81.
https://doi.org/10.1093/pcp/pcx162

Chika Yasuda, Hiroko Iijima, Haruna Sukigara, Takashi Osanai (2017)

Incubation of Cyanobacteria Under Dark, Anaerobic Conditions and Quantification of the Excreted Organic Acids by HPLC. Bio-protocol, 7(9), e2257.

DOI: 10.21769/BioProtoc.2257.

Takashi Osanai, Ayuko Kuwahara, Hitomi Otuki, Kazuki Saito, Masami Yokota Hirai (2017)

ACR11 is an activator of plastid-type glutamine synthetase GS2 in Arabidopsis thaliana. Plant Cell Physiol. 58, 650-657.
https://doi.org/10.1093/pcp/pcx033


Takashi Osanai, Youn-Il Park, Yuki Nakamura (2017)

Editorial: Biotechnology of microalgae, based on molecular biology and biochemistry of eukaryotic algae and cyanobacteria. Front. Microbiol. 8, 118.

 https://doi.org/10.3389/fmicb.2017.00118

Masahiro Takeya, Masami Yokota Hirai, Takashi Osanai (2017)

Allosteric inhibition of phosphoenolpyruvate carboxylases is determined by a single amino acid residue in cyanobacteria. Sci. Rep. 7, 41080.

https://doi.org/10.1038/srep41080

Yuko Tomita, Kazumasa Yoshioka, Hiroko Iijima, Ayaka Nakashima, Osamu Iwata, Kengo Suzuki, Tomohisa Hasunuma, Akihiko Kondo, Masami Yokota Hirai, Takashi Osanai (2016)

Succinate and lacate production from Euglena gracilis during dark, anaerobic conditions. Front. Microbiol. 7, 2050. 

https://doi.org/10.3389/fmicb.2016.02050

Sakiko Ueda*, Yuhki Kawamura*, Hiroko Iijima, Mitsuharu Nakajima,Tomokazu Shirai, Mami Okamoto, Akihiko Kondo, Masami Yokota Hirai,Takashi Osanai (2016)

Anionic metabolite biosynthesis enhanced by potassium under dark, anaerobic conditions in cyanobacteria. Sci. Rep. 6, 32354. *同等貢献

https://doi.org/10.1038/srep32354

Hiroko Iijima*, Tomokazu Shirai*, Yuka Nakaya, Mami Okamoto, Filipe Pinto, Paula Tamagnini, Tomohisa Hasunuma, Akihiko Kondo, Masami Yokota Hirai, Takashi Osanai (2016)

Metabolomics-based analysis revealing the alteration of primary carbon metabolism by the genetic manipulation of a hydrogenase HoxH in Synechocystis sp. PCC 6803. Algal Research  18, 305-313. *同等貢献

https://doi.org/10.1016/j.algal.2016.06.026

Ayuko Kuwahara*, Satomi Arisaka*, Masahiro Takeya*, Hiroko Iijima, Masami Yokota Hirai, Takashi Osanai (2015)

Modification of photosynthetic electron transport and amino acid levels by overexpression of a circadian-related histidine kinase hik8 in Synechocystis sp. PCC 6803. Front. Microbiol. 6, 1150. *同等貢献

https://doi.org/10.3389/fmicb.2015.01150

Takashi Osanai, Tomokazu Shirai, Hiroko Iijima, Yuka Nakaya, Mami Okamoto, Akihiko Kondo, Masami Yokota Hirai (2015)

Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium. Front. Microbiol. 6, 1064.

https://doi.org/10.3389/fmicb.2015.01064

Hiroko Iijima, Tomokazu Shirai, Mami Okamoto, Akihiko Kondo, Masami Yokota Hirai, Takashi Osanai (2015)

Changes in primary metabolism under light and dark conditions in response to overproduction of a response regulator RpaA in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Front. Microbiol. 6, 888.
https://doi.org/10.3389/fmicb.2015.00888


Tomokazu Shirai, Takashi Osanai, Akihiko Kondo (2016)

Desinging intracellulcar metabolism for production of target compounds by introducing a heterologous metabolic reaction based on a Synechocystis sp. 6803 genome-scale model. Microb. Cell Fact. 15, 13.

https://doi.org/10.1186/s12934-016-0416-8

Sayaka Hondo, Masatoshi Takahashi, Takashi Osanai, Mami Matsuda, Tomohisa Hasunuma, Akiko Tazuke, Yoichi Nakahira, Shigeru Chohnan, Morifumi Hasegawa,  Munehiko Asayama (2015)

Genetic engineering and metabolic profiling for overproduction of polyhydroxybutyrate in cyanobacteria. J. Biosci. Bioeng. 120, 510-517.

https://doi.org/10.1016/j.jbiosc.2015.03.004

Hiroko Iijima, Yuka Nakaya, Ayuko Kuwahara, Masami Yokota Hirai, Takashi Osanai (2015)

Seawater cultivation of freshwater cyanobacterium Synechocystis sp. PCC 6803 drastically alters amino acid composition and glycogen metabolism. Front. Microbiol. 6, 362. 

https://doi.org/10.3389/fmicb.2015.00326

Yuka Nakaya*, Hiroko Iijima*, Junko Takanobu, Atsuko Watanabe, Masami Yokota, Hirai, Takashi Osanai (2015)

One day of nitrogen starvatino reveals the effect of sigE and rre37 overexpression on the expression of genes related to carbon and nitrogen metabolism in Synechocystis sp PCC 6803. J. Biosci. Bioeng. 120, 128-134. (*Equally contributed)

https://doi.org/10.1016/j.jbiosc.2014.12.020

Keiji Numata, Yoko Motoda, Satoru Watanabe, Takashi Osanai, Takanori Kigawa (2015)

Co-expression of two polyhydroxyalkanoate synthase subuntis from Synechocystis sp. PCC 6803 by cell-free synthesis and their specific activity for polymerization of 3-hydroxybutyryl-coenzyme A.Biochemistry 54, 1401-1407.

https://doi.org/10.1021/bi501560b


Takashi Osanai*, Tomokazu Shirai*, Hiroko Iijima, Ayuko Kuwahara, Iwane Suzuki, Akihiko Kondo and Masami Yokota Hirai (2015) Alteration of cyanobacterial sugar and amino acid metabolism by overexpressino hik8, encoding a KaiC-associated histidine kinase. Environ. Microbiol. 17, 2430-2440. (*Equally contributed)

https://doi.org/10.1111/1462-2920.12715

Hiroko Iijima, Atsuko Watanabe, Junko Takanobu, Masami Yokota, Hirai,Takashi Osanai (2014)

rre37 overexpression alters gene expression related to the tricarboxylic acid cycle and pyruvate metabolism in Synechocystis sp PCC 6803.ScientificWorldJournal, 2014, 2014:921976.

https://doi.org/10.1155/2014/921976

Takashi Osanai*, Akira Oikawa*, Hiroko Iijima, Ayuko Kuwahara, Munehiko Asayama, Kan Tanaka, Masahiko Ikeuchi, Kazuki Saito, and Masami Yokota Hirai (2014)

Metabolomic Analysis Reveals Rewiring of Synechocystis sp. PCC 6803 Primary Metabolism by ntcA-overexpression. Environ. Microbiol. 16, 3304-3317. (*Equally contributed).

https://doi.org/10.1111/1462-2920.12554

Takashi Osanai, Akira Oikawa, Keiji Numata, Ayuko Kuwahara, Hiroko Iijima, Yoshiharu Doi, Kazuki Saito, and Masami Yokota Hirai (2014)

Pathway-level acceleration of glycogen catabolism by a response regulator in the cyanobacterium Synechocystis species PCC 6803. Plant Physiol. 164, 1831-1841.

https://doi.org/10.1104/pp.113.232025


Takashi Osanai*, Akira Oikawa*, Tomokazu Shirai, Ayuko Kuwahara, Hiroko Iijima, Kan Tanaka, Masahiko Ikeuchi, Akihiko Kondo, Kazuki Saito, and Masami Yokota Hirai (2014)

Capillary electrophoresis-mass spectrometry reveals the distribution of carbon metabolites during nitrogen starvation in Synechocystis sp. PCC 6803. Environ. Microbiol.16, 512-524. (*Equally contributed).

https://doi.org/10.1111/1462-2920.12170

Ancy Joseph, Shimpei Aikawa, Kengo Sasaki, Hiroshi Teramura, Tomohisa Hasunuma, Fumio Matsuda, Takashi Osanai, Masami Yokota Hirai, and Akihiko Kondo (2014)

Rre37 stimulates accumulation of 2-oxoglutarate and glycogen under nitrogen starvation in Synechocystis sp. PCC 6803. FEBS Lett. 588, 466-471.

https://doi.org/10.1016/j.febslet.2013.12.008

Takashi Osanai, Ayuko Kuwahara, Hiroko Iijima, Kiminori Toyooka, Mayuko Sato, Kan Tanaka, Masahiko Ikeuchi, Kazuki Saito, and Masami Yokota Hirai (2013)

Pleiotropic effect of sigE over-expression on cell morphology, photosynthesis and hydrogen production in Synechocystis sp. PCC 6803. Plant J. 76, 456-465.

https://doi.org/10.1111/tpj.12310

Takashi Osanai, Keiji Numata, Akira Oikawa, Ayuko Kuwahara, Hiroko Iijima, Yoshiharu Doi, Kan Tanaka, Kazuki Saito, and Masami Yokota Hirai (2013)

Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis sp. PCC 6803.DNA Res. 20, 525-535.

https://doi.org/10.1093/dnares/dst028


Takashi Osanai#, Akira Oikawa, Miyuki Azuma, Kan Tanaka, Kazuki Saito, Masami Yokota Hirai, and Masahiko Ikeuchi (2011) Genetic engineering of the group 2 sigma factor SigE widely activates the expressions of sugar catabolic genes in Synechocystis sp. PCC 6803. J. Biol. Chem. 286, 30962-30971. #Corresponding author 

DOI: 10.1074/jbc.m111.231183 

Miyuki Azuma*, Takashi Osanai*, Masami Yokota Hirai, and Kan Tanaka (2011)

A response regulator Rre37 and an RNA polymerase sigma factor SigE represent two parallel pathways to activate sugar catabolism in a cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 52, 404-412. (*Equally contributed).

https://doi.org/10.1093/pcp/pcq204

Takashi Osanai#, Masahiko Imashimizu, Asako Seki, Shusei Sato, Satoshi Tabata, Sousuke Imamura, Munehiko Asayama, Masahiko Ikeuchi, and Kan Tanaka (2009)

ChlH, the H subunit of the Mg-chelatase, is an anti-sigma factor for SigE in Synechocystis sp. PCC 6803. Proc. Natl. Acad. Sci. USA 106, 6860-6865. #Corresponding author

 https://doi.org/10.1073/pnas.0810040106

Takashi Osanai, Masahiko Ikeuchi, and Kan Tanaka (2008)

Group 2 sigma factors in cyanobacteria. Physiol. Plant.133, 490-506. (Review)

https://doi.org/10.1111/j.1399-3054.2008.01078.x

Takashi Osanai, and Kan Tanaka (2007)

Keeping in touch with PII: PII-interacting proteins in unicellular cyanobacteria. Plant Cell Physiol. 48, 908-914. (Review)

https://doi.org/10.1093/pcp/pcm072

Takashi Osanai, Miyuki Azuma, and Kan Tanaka (2007)

Sugar catabolism regulated by light- and nitrogen-status in the cyanobacterium Synechocystis sp. PCC 6803. Photochem. Photobiol. Sci. 6, 508-514. (Review)

https://doi.org/10.1039/B616219N

Takashi Osanai, Sousuke Imamura, Munehiko Asayama, Makoto Shirai, Iwane Suzuki, Norio Murata, and Kan Tanaka (2006)

Nitrogen induction of sugar catabolic gene expression in Synechocystis sp. PCC 6803.DNA Res.13, 185-195.

https://doi.org/10.1093/dnares/dsl010

Takashi Osanai, Shusei Sato, Satoshi Tabata, and Kan Tanaka (2005)

Identification of PamA as a PII-binding membrane protein important in nitrogen-related and sugar-catabolic gene expression in Synechocystis sp. PCC 6803. J. Biol. Chem. 280, 34684-34690.

DOI: 10.1074/jbc.M507489200

Takashi Osanai, Yu Kanesaki, Takayuki Nakano, Hiroyuki Takahashi, Munehiko Asayama, Makoto Shirai, Minoru Kanehisa, Iwane Suzuki, Norio Murata, and Kan Tanaka (2005)

Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 s factor SigE. J. Biol. Chem. 280, 30653-30659.

DOI: 10.1074/jbc.M505043200


Munehiko Asayama, Sosuke Imamura, Satoshi Yoshihara, Ai Miyazaki, Naoko Yoshida, Takashi Sazuka, Takakazu Kaneko, Osamu Ohara, Satoshi Tabata, Takashi Osanai, Kan Tanaka, Hideo Takahashi, and Makoto Shirai (2004)

SigC, the Group 2 sigma factor of RNA polymerase, contributes to the late-stage gene expression and nitrogen promoter recognition in the cyanobacterium Synechocystis sp. strain PCC 6803. Biosci. Biotech. Biochem. 68, 477-487.

https://doi.org/10.1271/bbb.68.477

bottom of page